Le député et mathématicien Cédric Villani a publié un
rapport pour renforcer l'apprentissage des mathématiques à l'école. Les élèves
français sont aujourd'hui plus que médiocres dans cette discipline. Pourtant,
jusqu'en 1985, l'enseignement des maths en France était reconnu comme l'un des
meilleurs.
24e, sur 72 ! Voici la place obtenue par les élèves
français de 15 ans au dernier classement PISA, en décembre 2016. Pas si nul ?
Score obtenu : même pas la moyenne, avec 493 points sur 1000 ! Une note qui
recule même de quatre points par rapports au classement précédent.
Pour mettre un terme à cette tendance inquiétante de
la dégradation du niveau des élèves français en mathématiques, le gouvernement
d'Edouard Philippe a commandé un rapport au député et mathématicien Cédric
Villani, ainsi qu'à l'inspecteur général de l'Education nationale Charles
Torossian. Le document, publié en ce mois de février 2018, prône le
renforcement du poids des mathématiques dans la formation des instituteurs,
encourage à la manipulation d'objets à l'école, ou encore propose pour les
lycéens un module de "réconciliation" avec cette discipline.
Pourtant, de 1880 jusqu'à l'entre-deux-guerres,
l'enseignement français des mathématiques était d'une qualité exceptionnelle. Alors
comment expliquer que les élèves de l'Hexagone soient devenus de tels cancres ?
Pour le comprendre, nous avons interrogé deux enseignants-chercheurs en
mathématiques. Alors que tous leurs pairs ne s'y intéressent pas, eux sont
sensibles à la question de l'enseignement et de la diffusion de leur
discipline.
De 1881 à 1968 : suite aux Lois Ferry,
un enseignement d'excellence en calcul
Pour appréhender les raisons de la chute de niveau, il
faut remonter au temps où l'enseignement des maths en France atteignait
l'excellence. Pour Jean Pierre Demailly, enseignant chercheur à l’université de Grenoble, il faut remonter à l'époque de Jules
Ferry, qui en 1881 instaure l'enseignement gratuit et obligatoire pour tous
jusqu'à l'âge de 13 ans :
Il y a eu des études très poussées, par
des éducateurs comme Ferdinand Buisson en France et Wilhelm Grube en Allemagne,
qui ont abouti à la mise en place des meilleures stratégies d’enseignement
connues à l’époque, et ça a extrêmement bien marché, notamment pour le calcul.
Je dirais que depuis ces années-là, des années 1880 jusqu’aux années 1968
environ, l’enseignement primaire français n’a pas beaucoup changé, et a été
reconnu comme l’un des meilleurs du monde, sinon le meilleur. En particulier
dans la période d’entre-deux-guerres, entre 1918 et 1940 ; le seul changement
notable a été la suppression de l’enseignement primaire supérieur par J.
Carcopino en 1941.
C’est une des raisons pour laquelle à partir de 1945,
jusqu'à 1970, la France a connu un véritable âge d'or scientifique, explique
encore Jean-Pierre Demailly :
C’est l’époque où opéraient tous les
gens ayant bénéficié de cet enseignement. La France a connu à partir de 1945 une
période de développement remarquable de sa recherche mathématique ; elle
perdure aujourd’hui, mais se trouve gravement menacée par l’état actuel de
notre système éducatif.
Dans les années 1950-1970, la France est réputée pour
son excellence au niveau mondial :
La France était quasiment dominante avec
des mathématiciens exceptionnels qui, à eux seuls, produisaient une part importante
des mathématiques mondiales. Il y avait le renouveau impulsé par le groupe
Bourbaki en particulier, et puis quelques mathématiciens extraordinaires comme
Jean-Pierre Serre et Alexandre Grothendieck. Des mathématiques extrêmement
abstraites, puissantes, ont été créées.
Alexandre Grothendieck, au cours d’une séance du
séminaire de géométrie algébrique (1962
Les mathématiques modernes : un
enseignement des maths abstrait et imbitable
Dans cette même période d'après-guerre, de nouvelles
préconisations éducatives commencent à émerger dans le monde, fondées davantage
sur des idéologies et des théories socio-psycho-pédagogiques fumeuses que sur
une analyse rigoureuse des pratiques d’enseignement, selon Jean-Pierre
Demailly. Elles sont nourries en France par les succès de l’abstraction
mathématique. Ce qui conduira notamment à la réforme de ce qu'on appellera les "mathématiques
modernes", à l'origine d’un bouleversement des méthodes d'enseignement des
maths dans la période 1969-1984, explique encore l'universitaire :
La réforme des maths modernes était
fondée sur une idée à priori raisonnable : l’enseignement du lycée de l’époque n’était
pas très proche des mathématiques savantes pratiquées par les chercheurs. Mais il y a eu l’illusion qu’on allait
pouvoir faire descendre une partie de ces mathématiques de très haut niveau
dans l’enseignement général, jusqu’à la maternelle !
En 1969, une première réforme touche ainsi
l'enseignement au lycée, où l'on commence à catéchiser ces mathématiques
modernes, assez abstraites. Le fiasco n'est cependant pas immédiat, d'après
Jean-Pierre Demailly qui affirme que la moitié de sa classe de Terminale C
suivait convenablement :
C’était simplement des mathématiques
telles qu’on les enseignerait aujourd’hui en deuxième ou troisième année d’université,
mais mises à la portée des élèves de lycée.
Par contre, Etienne Ghys, mathématicien, géomètre et
directeur de recherche à l’ENS de Lyon, se souvient qu'il était le seul élève à pouvoir
appréhender et savourer ces mathématiques abstraites. Si vous souhaitez vous
faire une idée de ce à quoi pouvaient ressembler ces "mathématiques modernes", vous pouvez écouter cette
émission savante de 1971, "Les grandes avenues de la science
moderne", sur France Culture, à l'époque de leur apogée :
À partir de 1970-1971, c'est le début de la fin :
l'enseignement des maths modernes est mis en place au collège, puis à l'école
primaire... et même en maternelle ! Et si les élèves doués ou ayant bénéficié
d'une imprégnation familiale peuvent éventuellement suivre, les autres sont
désorientés, au moins autant que leurs parents, comme le racontait encore Jean-Pierre
Demailly :
Les enfants subissaient à cette époque
un enseignement très formel, très axiomatique. Par exemple on leur donnait une
définition de la droite, en 4e, complètement abstraite, ahurissante. Correcte, mais
je pense qu’aucun élève ne pouvait tirer profit de ça. Comme on a poussé
l’excès de formalisme à tous les niveaux et qu’en plus les enseignements
fondamentaux de l'école primaire, lecture, calcul... s’est beaucoup dégradé
dans l’intervalle, on est arrivé à partir de 1980 à avoir des élèves qui ne
pouvaient plus absorber ces contenus extrêmement ambitieux.
Ça a été l’échec. Le premier grand coup
de rabot a eu lieu sous le ministère Chevènement. Il y a eu un retour de
balancier et là, on a tout viré !
Aujourd'hui, des programmes "en
gruyère", et des professeurs recrutés au rabais ?
Plus de maths modernes ambitieuses dans les programmes
donc. Mais pour autant, pas question de revenir exactement à l'enseignement tel
qu'il était pratiqué avant. Pour Jean-Pierre Demailly, si on est revenu à des mathématiques
plus concrètes, on a littéralement désossé les programmes, ne serait-ce que
parce que les volumes de cours se sont considérablement réduits :
Je me rappelle qu'en Terminale C j’avais
9h de maths par semaine, et 7h de physique par semaine... 16h de sciences ! On
en faisait quasiment plus en Terminale C que je ne peux enseigner aujourd'hui
en L2, voire en L3. Le décalage est colossal. Surtout, l’ambition était très
grande et on exigeait énormément des élèves, donc il y avait des problèmes de
bac qui étaient quasiment des problèmes posés aujourd’hui au niveau universitaire,
qui demandaient une réflexion considérable, une maîtrise mathématique profonde.
Moins d'heures de cours... mais les commissions de
programmes, plutôt que de sacrifier purement et simplement certaines parties
des programmes, on fait le choix de plutôt supprimer ce qui en faisait "le
liant", d'après l'universitaire.
Il n'hésite pas à parler de la "vacuité" de
l'enseignement actuel, mal masquée par les innombrables couleurs et images qui
enjolivent les manuels scolaires :
On a des programmes en gruyère. Les gens
qui étaient dans les commissions de réforme ont toujours eu des scrupules à
enlever des choses. Ils auraient pu se dire “Maintenant il n’y a plus que cinq
heures de maths en terminale S. On ne peut pas faire ce qu’on faisait avant en
neuf heures, donc au lieu de faire ce qu’on faisait avant en Terminale C, il
n’y a qu’à faire ce qu’on faisait avant en 3e.” Mais c’était impensable de
demander aux commissions de faire reculer le niveau des enseignements de deux
ou trois ans. Donc au lieu de faire ça, on a gardé des bribes des anciens
programmes avec leurs difficultés, et on a enlevé des choses. Mais ces choses,
c’était tout ce qui faisait la substance, l’argumentation, les preuves, la
structuration logique. Des gens qui regardent de loin peuvent avoir
l’impression que ces programmes ont un bon contenu parce qu’on y voit encore
des notions qui ont l’air savantes. En physique c’est encore pire !
Enfin, pour lui, la baisse de niveau est corrélée à
une baisse de la qualité de l’enseignement
... dans le secondaire :
Il y a une pénurie d'étudiants dans les
sciences dites exactes. Actuellement, pour les concours de recrutement des professeurs
de mathématiques, il manque en gros une centaine de candidats à l’agrégation,
et entre 300 et 400 candidats au Capes. C’est énorme ! Vous imaginez bien que
les concours de recrutement sont obligés de gratter dans les listes
supplémentaires, et de prendre des candidats qui ne sont pas parmi les
meilleurs. Alors à l’agrégation, les jurys sont quand même assez exigeants et
préfèrent laisser tomber 100 postes, mais au Capes, il faudrait probablement en
lâcher encore beaucoup plus qu’on en lâche. J’ai enseigné en L3, notamment à
des gens qui allaient devenir profs de maths, et je dirais que le niveau actuel
est catastrophique.
Et, plus catastrophique encore d'après lui, dans le
primaire :
C’est peut-être encore plus
problématique pour les professeurs des écoles (anciennement appelés
instituteurs). Il y a à peu près entre 75 et 80% d’étudiants issus des filières
non scientifiques. En soi, ce ne serait pas un problème, si l’enseignement
était d’excellent niveau en primaire et dans le secondaire, on aurait des gens
qui auraient une connaissance tout à fait suffisante. Mais actuellement, on a
des gens qui n’ont pratiquement plus fait de sciences au lycée. En plus, en
général, ils ont horreur des maths. Donc vous avez des futurs professeurs
d’école qui haïssent les maths, n’en ont plus fait depuis fort longtemps, et à
qui on dit brutalement : “Il va falloir refaire un peu de maths, et enseigner
ça à des élèves”.
La méthode de Singapour pourrait-elle
sauver l'enseignement français des maths ?
Dépité par l'état actuel de l'enseignement, Jean-Pierre
Demailly en vient même à regretter le temps où les élèves de l'enseignement
primaire planchaient sur des problèmes de baignoires et de robinetterie :
Ces problèmes très concrets avaient leur
mérite. Dans nos expérimentations scolaires, on a remis ça en place et ça marche
fort bien, même avec les élèves d’aujourd’hui. Quand on refait pas à pas ce qui
est nécessaire, on s’aperçoit que les élèves retrouvent le niveau qui a pu être
celui de l’école d’il y a 50 ans.
Raison pour laquelle le mathématicien prône un retour
vers des méthodes plus concrètes, modélisées, telle que la fameuse méthode de
Singapour (pays arrivé premier au dernier classement PISA, largement dominé par
l'Asie), issue du monde anglo-saxon :
Singapour est une puissance économique
émergente, en train de devenir une grande puissance scientifique. Ils ont besoin
de la science et de la technologie pour alimenter leur industrie, leur
recherche. Donc de façon très pragmatique, ils ont mis en place une école
performante, avec un enseignement du calcul très concret, relativement efficace,
plus que l’enseignement de la plupart des pays occidentaux, mais à mon avis, moins
performant que celui de la France pendant son âge d’or. Mais il n’y a pas
photo, la méthode de Singapour est très supérieure à ce que l’école française
fait aujourd’hui.
A REECOUTER : Invité des Matins de France Culture le
15 Novembre, Cédric Villani donnait lui aussi son sentiment sur la méthode de
Singapour. Un avis en niveaux de gris :
Les méthodes vont se décliner de culture
à culture. On ne veut pas que le monde entier utilise la même méthode, ce serait
contre-productif, et ce serait dommage, on perdrait un enrichissement.
Sur ce sujet, le mathématicien Etienne Ghys - qui n'a
pas d'avis tranché concernant la méthode de Singapour - prend ses distances par
rapport au coup de gueule de Jean-Pierre Demailly :
Bien sûr, on peut regretter les problèmes
de robinets, mais le monde n’est plus le même qu’il y a 40 ans, et il faut quand
même qu’on pense à nos enfants et aux futurs adultes qu’ils seront, qui sont
soumis à d’autres problématiques. Aujourd’hui, nos adolescents vivent avec
internet, avec leurs téléphones portables, et les robinets de la baignoire, ce
n’est plus le même problème. Donc c’est aussi très important que les
programmes, que la méthode évolue. On ne va pas continuer à pleurnicher sur le
certificat d’études de 1930. Vous parlez de robinets, mais maintenant il y a
des ordinateurs. Ça parait tellement important que dès l’école primaire, des
enfants puissent avoir une conception saine de ce qu’est le raisonnement
informatique. S’il faut payer le prix que les baignoires disparaissent, ce
n’est pas grave !
France : une école mathématique toujours
virtuose
Terminons cet article au constat un peu décapant, sur
une bonne nouvelle. L'école mathématique française reste extrêmement forte,
avec un large rayonnement à l'international, comme le rappelle avec justesse
Jean-Pierre Demailly :
Il n'y a aucune autre discipline où la
France reçoive autant de distinctions et de prix scientifiques qu’en mathématiques.
En maths, il y a la médaille Fields, decernée tous les quatre ans, et la France
a eu quelque chose comme quatorze ou quinze médailles Fields au total, si on
inclut les médaillés étrangers formés en France.
Alors, pourquoi un tel fossé, entre la qualité de
l’école de mathématiques, et celle de l'enseignement français ? Parce que
d'après Jean-Pierre Demailly, les mathématiciens de l'école française n'ont pas
appris leur savoir, de très haut niveau, à l'école :
Ce sont soit des enfants qui travaillent
seuls, intensément, soit qui ont une imprégnation familiale, soit des gens exceptionnels
qui ensuite parviennent à se raccrocher à la communauté mathématique. Mais
quelqu’un qui se contenterait du régime extrêmement pauvre de l’enseignement
public général n’aurait aucune chance de survie, sauf si c’est un pur génie.
Casser le thermomètre ?
Leur constat est au moins aussi assassin que la 24e place
française à PISA... et pourtant, les deux mathématiciens, quoique critiques,
estiment qu'il faut aussi relativiser ce classement. Jean-Pierre Demailly et
Etienne Ghys s'accordent en effet à dire qu'il ne s'agit pas du meilleur
indicateur pour se faire une idée du niveau des élèves en sciences :
On fait subir à des
élèves des tests qui sont strictement les mêmes pour les petits Indiens, les
petits Chinois, les petits Finlandais, les petits Français... avec des
questions auxquelles ils ne sont pas forcément habitués, ou qui ne sont pas
forcément conçues pour être adaptées à diverses cultures. Je ne dis pas qu’il
n’y a pas eu de chute, tout ce que je dis c’est qu’il faut prendre cette
question avec précaution. Nous avons en France une histoire longue, un rapport
très fort avec les mathématiques : n'oublions pas que Descartes était français
! Et encore aujourd’hui, la façon dont on fait des maths en France est un peu
plus qu’ailleurs basée sur le raisonnement, le cartésianisme. Donc bien
entendu, quand on mesure avec le mauvais thermomètre, on n’a pas la bonne
température.
Hélène Combis-Schlumberger
11.12.2017 (mis à jour le 12/02/2018 à 11:00)
Texte sauvegardé :
Jean-Pierre Demailly est président du GRIP, Groupe de Réflexion Interdisciplinaire sur les Programmes.
Page personnelle de Jean-Pierre Demailly (questions éducatives).
Avis de l'Académie des Sciences sur la place du calcul dans l'enseignement primaire (09.01.07)
Luc Ferry: «Mathématiques et vie quotidienne»
CHRONIQUE - Prétendre que les mathématiques sont utiles dans la vie quotidienne est faux ou très exceptionnel. L'enjeu de la revalorisation de l'enseignement des maths est avant tout de leur donner du sens.
La rédaction vous conseille :
Baisse du niveau en maths: Cédric Villani appelé à la rescousse
Devant les mauvais résultats des élèves français, le ministre de l'Éducation lance une réflexion chapeautée par le mathématicien, qui est aussi député LREM dans l'Essonne.
La rédaction vous conseille :
Aucun commentaire:
Enregistrer un commentaire